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Two-layer exchange flow through a contraction with both friction and barotropic
forcing is modelled in terms of three parameters reflecting the friction and the
strength and period of the barotropic forcing. In the appropriate limits, the results
for steady flow with and without friction, and inviscid barotropically forced flow
are recovered. The predicted time-dependent interface position compares well with
laboratory experiments, improving on the inviscid formulation. The concurrent effects
of friction and barotropic forcing on average exchange flow rate are determined.
When friction is weak barotropic forcing increases the exchange rate. However, when
friction is high, tidal forcing can result in a reduced exchange rate, a phenomena
that we call tidal inhibition. When friction is weak maximal exchange occurs
throughout the tidal cycle, but as friction is increased submaximal flow develops
for longer and longer periods. As friction is increased even further the flow becomes
hydraulically uncontrolled. The parameter range for major sea straits includes tidally
enhanced and tidally inhibited flows, as well as maximal, submaximal and uncontrolled
flows.

1. Introduction
Exchange flows often occur in natural straits and man-made channels that connect

two water bodies of different density. Well-known examples include the exchange
between the Atlantic Ocean and the Mediterranean Sea through the Strait of Gibraltar
(Armi & Farmer 1988; Farmer & Armi 1988), between the Sea of Marmara and the
Black Sea through the Bosphorus (Gregg & Ozsoy 2002) and between the North
Sea and the Baltic Sea through the Great Belt (Ottesen-Hansen & Moller 1990). In
the absence of time-dependent forcing and with negligible fluid mixing, the density-
driven exchange can be treated as two steady counter-flowing homogeneous layers
(figure 1a, b).

In many circumstances, density-driven exchange is influenced by tidal forcing. In the
Strait of Gilbraltar tidal currents flowing over uneven topography trigger barotropic
waves (Morozov et al. 2002), significantly affecting the exchange through the strait.
Similarly, the exchange flow through the Bab el Mandab Strait is influenced by
energetic tidal currents entering the strait (Jarosz, Murray & Inoue 2005). Barotropic
forcing can also be associated with basin-scale seiches. In Lake Ontario, surface
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Figure 1. Definition diagram for two-layer exchange flow through a contraction:
(a) top view; (b) side view.

seiches at multiple frequencies are triggered by wind forcing, resulting in an unsteady
exchange through the Burlington Ship Canal (Lawrence et al. 2004).

Exchange flows, whether they are steady or unsteady, are inevitably subject to
friction. For instance, field data show that friction on the bottom and sidewalls of the
Burlington Ship Canal combines with interfacial shear, to reduce the exchange flow
rate to approximately 50 % of the inviscid value (Lawrence et al. 2004).

Exchange flow through a contraction has been the subject of a series of
investigations. Armi (1986) considered the frictionless case without forcing. Armi &
Farmer (1986) and Farmer & Armi (1986) analysed frictionless exchange with quasi-
steady forcing. Helfrich (1995) and Frankcombe & Hogg (2007) analysed frictionless
exchange with periodic forcing. Zhu & Lawrence (2000) and Zaremba, Lawrence &
Pieters (2003) investigated frictional effects without barotropic forcing. While both
friction and barotropic forcing have been included in numerical models of specific
straits (Oguz, Ozsoy & Latif 1990), the present study may be the first general study
of the exchange flow problem to include both friction and barotropic forcing. The
theoretical background to this problem is presented in § 2, followed by a description
of solution techniques and test runs in § 3. In § 4, we present predictions of interface
position, exchange flow rate and flow regime. The results are discussed in § 5 and
conclusions are drawn in § 6.
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2. Theoretical background
Following Helfrich (1995) we consider exchange flow through a contraction of

width:

b(x) = B

[
1 + 4

( x

L

)2
]

(2.1)

where B is the width at the narrowest point, x is the horizontal distance from this
point and L is the horizontal length scale (figure 1a). This shape allows us to focus
on the effects of friction and barotropic forcing, while avoiding the complications
arising from a more complex geometry.

Four main approximations are made to simplify this problem. First is the
assumption of no fluid mixing across the density interface, ensuring the density
within each layer remains constant. Second, hydrostatic pressure is assumed. Third,
the flow is assumed to be one-dimensional, with layer velocities varying only in the
flow direction. Finally, a small relative density difference between the layers allows us
to assume that variations in free surface elevation are small and to focus on variations
in interface height.

We do not attempt to model the processes that result in interfacial shear, but
retain their gross effect on the momentum balance of the flowing layers using the
quadratic law. Bottom friction and sidewall friction are treated similarly. With these
simplifications, two-layer exchange is completely described by the interface height
and the layer velocities. Following Zaremba et al. (2003), we can write the equation
of mass conservation and the momentum equation for each layer as follows:
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where subscript, j = 1(2), refers to the upper (lower) layer; aj and yj denote the layer
area and thickness, which are related through yj = aj/b; uj is the layer velocity; t is
time; the reduced gravitational acceleration g′ = g(ρ2 − ρ2)/ρ2, where ρj represents
layer density; Sj is the friction slope. In (2.4), �u = u2 − u1 is the velocity shear; and
fw , fb and fi are the wall, bottom and interfacial friction factors, respectively.

Following Helfrich (1995) we introduce barotropic forcing via a volumetric transport
of fixed frequency and amplitude

q = qo sin

(
2πt

T

)
, (2.5)

where q = u1a1 + u2a2 is the barotropic transport, qo is the amplitude and T is the
period. Next, we rewrite (2.2) and (2.3) in terms of �u and a1; the layer velocities can
be recovered from u1 = [(q + a1�u)/a] − �u and u2 = �u + u1, where a = a1 + a2 is
the total cross-sectional area. Non-dimensional equations for �u and aj are obtained
using the following time, length and velocity scales: t∗ = t/T , x∗ = x/L, y∗

j = yj/Y ,

b∗ = b/B , �u∗ = �u/
√

g′Y , u∗
j = uj/

√
g′Y and q∗ = q/(uoYB), where Y = y1 + y2 is the

total flow depth; and uo is the amplitude of the barotropic flow speed at the narrows.
The asterisks indicate dimensionless quantities. Equations (2.2), (2.3) and (2.4) reduce
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Y L g′ √
g′Y uo

Strait (m) (km) (m s−2) (m s−1) (m s−1) α β γ qFA86 qZ03 qe

Low friction
Tiran 270 3 0.0035 0.97 0.24 0.04 0.25 15 1.0 0.94 0.95

Moderate friction
Gibraltar 280 20 0.02 2.4 1.5 0.3 0.6 5.3 0.73 0.49 0.62
Lombok 350 40 0.05 4.2 2.1 0.5 0.5 4.7 1.0 0.63 0.66
Messina 80 10 0.01 0.89 1.8 0.5 2.0 4.0 1.0 0.63 1.12

Bab El Mandab 137 20 0.033 2.1 0.5 0.6 0.24 4.8 1.0 0.58 0.59

High friction
Oslofjord 15 10 0.02 0.55 0.6 2.7 1.0 2.5 1.0 0.30 0.23
Bosphorus 35 30 0.12 2.0 0.5 3.4 0.25 3.1 1.0 0.27 0.25

Table 1. Geometry and dynamic parameters corresponding to some prominent straits assuming
fb =0.004 and ri = 1. Values of Y , L, g′, uo and T ( = 12.5 h) are those given in Helfrich (1995),
except for Bab el Mandab where the values of Smeed (2004) are used. All straits are idealized
as contractions except for Gibraltar which is treated as an offset sill and contraction, with
depth 280m at the sill and 560m in the contraction, and the width at the narrows of 0.8 times
the width at the sill. qFA86, qZ03 and qe are the exchange rates predicted by Farmer & Armi
(1986), Zaremba et al. (2003) and the present study, respectively.
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where the asterisks have been dropped.
Five dimensionless parameters appear in (2.6) and (2.7)

α =
fbL

Y
; β =

uo√
g′Y

; γ =
T

√
g′Y

L
(2.8)

ri =
fi

fb

; rw =
fwY

fbB
. (2.9)

Unless otherwise stated we set ri to unity and rw to zero. The three primary parameters
can be interpreted as follows:

(1) α gives the relative importance of frictional to inertial effects;
(2) β gives the strength of the barotropic flow relative to the velocity scale of the

density-driven flow and
(3) γ represents the ratio of the forcing period to the time scale for interface waves

to travel through the strait.
We investigate a range of values of α, β and γ representative of conditions in the

well-known straits, listed in table 1.

3. Solution techniques and test runs
The MacCormack explicit multistep method (Chung 2002, p. 82) is used to solve

(2.6) and (2.7) numerically. This finite difference method employs a predictor-corrector
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scheme well suited for nonlinear problems. This scheme handles anticipated hydraulic
jumps well, with little distortion when the Courant number, C = umax�t/�x, is close
to one, where umax is the maximum velocity, �t is the time step and �x is the grid
resolution. The scheme is of second-order accuracy, and numerically stable for C � 1.

Solving the nonlinear problem numerically requires the addition of a small amount
of diffusion to maintain stability. Otherwise, high frequency short waves appear
at the interface due to truncation errors in the second-order numerical technique.
Physically, disturbances shorter than a critical wavelength are subject to the Kelvin–
Helmholtz instability (see Drazin & Reid 1981). This critical wavelength increases
with increasing velocity shear. Following Helfrich (1995) and Zaremba et al. (2003)
we limit the growth of unstable waves by adding a diffusion term to the right-hand
side of (2.6) and (2.7). The viscosity in this diffusion term is set as low as possible,
typically making the diffusion term three orders of magnitude lower than the other
terms in (2.6) and (2.7).

The above approach is acceptable if Long’s (1956) criterion, i.e. |�u| � 1, is satisfied.
Otherwise disturbances of all wavelengths may become unstable and solutions to (2.6)
and (2.7) may not be valid. Lawrence (1990) demonstrated that (�u)2 � G2 in all two-
layer flows, so Long’s criterion is always satisfied in regions of internally subcritical
flow. In our simulations Long’s criterion was always satisfied throughout the domain
when α � 0.1. For α � 0.1 Long’s criterion was often violated in the supercritical flow
downstream of the throat of the contraction during part of the tidal cycle. Even this
case is generally not a problem, since instabilities are swept away from the throat.
Except where noted, we have only considered flows where Long’s criterion is satisfied.

In reality interfacial shear instabilities evolve to form a mixed layer of thickness
δ ≈ 0.3(�u)2Y (Koop & Browand 1979). Assuming |�u| =1, the upper bound in
regions of subcritical flow, Helfrich (1995) demonstrated that the presence of a
mixed layer reduces the exchange flow through a contraction by approximately 20 %.
This reduction in exchange is based on the characteristic shape of the velocity and
density profiles in flows subject to interfacial mixing and, to a first approximation, is
independent of other processes, e.g. barotropic forcing. A comparable reduction of 10–
15 % was obtained by Winters & Seim (2000) using a numerical model of exchange
through a contraction that resolved interfacial shear instabilities. Hogg, Ivey &
Winters (2001) consider exchange flows with much higher reductions in exchange
rate, but such flows require stronger mixing than that generated by interfacial
shear instabilities. While we acknowledge the importance of interfacial mixing, its
inclusion is beyond the scope of the present study, and we assume that the two-layer
approximation does not compromise our ability to investigate the effects of friction
and tidal forcing.

At the ends of the channel an explicit radiation condition (Orlanski 1976) is applied
to a1 and �u. While our focus is on the dimensionless range [−3, 3], we place the
channel ends at x ≈ 5 to avoid possible artificial end effects. The radiation condition
allows waves to propagate freely across the open boundaries of a frictionless strait.
For dynamic consistency, we introduce a ramping factor between 0 and 1 for friction
over the channel sections [−5, −4] and [4, 5]; the factor allows zero friction at the
channel ends and linearly ramps up to the values given by the right-hand side of (2.7)
at x = ± 4.

The integration of (2.6) and (2.7) proceeds from a lock-exchange initial condition,
where initially a barrier at the narrowest section (x = 0) separates the two water
bodies of different density. The barrier is then removed releasing gravity currents that
propagate away from the narrows. The equations are integrated for one tidal cycle
before imposing barotropic forcing. Barotropic forcing is then imposed for at least 10
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Figure 2. Predicted unsteady profiles of the density interface over a barotropic forcing cycle.
(a) The predictions at various stages during the first half of the forcing cycle, when the
barotropic transport [given by (2.5)] is from left to right. (b) The predictions during the second
half of the forcing cycle, when the transport is from right to left. Internal hydraulic jumps
form near the contraction on both sides and propagate towards the ends of the channel. The
hydraulic jumps become weaker as they propagate because of channel expansion.

tidal cycles to attain stable periodic solutions of interface position and layer velocities.
The lock-exchange initial condition allows maximal exchange flows with hydraulic
controls on either side of the narrows. Depending on the parameter values, maximal
exchange may persist throughout the simulation, or one or both of the controls may
be lost resulting in submaximal or uncontrolled exchange, respectively.

To test the model a flow with weak friction (α =0.1) and moderate barotropic
forcing (β = 1 and γ = 5) was chosen. This set of friction and forcing parameters
yielded fast-moving interfacial waves and hydraulic jumps (figure 2a, b). About one-
quarter of the way through each tidal cycle hydraulic jumps form at x ≈ −1 and
are swept downstream (from left to right) by the barotropic flux. The corresponding
behaviour starts at x ≈ −1 about three-quarters of the way through each tidal cycle.
On both sides of the contraction the hydraulic jumps weaken as they propagate in the
expanding channel. Over the entire forcing cycle, there is no detectable reflection from
the ends. The ability of the model to obtain stable solutions and to track hydraulic
jumps without boundary reflection provided the confidence needed to proceed with
an investigation of the effects of varying α, β and γ .

4. Results
This section compares predicted interface positions with the laboratory experiments

of Helfrich (1995). It also investigates the variation of interface position, exchange
flow rate and flow regime, for a range of values of α, β and γ representative of flows
found in nature.

4.1. Comparison with laboratory experiments

Helfrich (1995) conducted laboratory experiments in a channel satisfying (2.1) with
B = 0.05 m and L = 0.2 m for |x| � 0.5. He presents photographs of an experiment
where the total flow depth was Y = 0.09 m, β = 1 and γ = 7.8, and provides inviscid
predictions of the interface profile at various stages of a forcing cycle (figure 3a–h).
We have made a corresponding set of frictional predictions using α = 0.04, ri = 0.5 and
rw =1.8. These values were obtained by setting fb = fw =0.02 and fi = 0.01, based
on the study of Zhu & Lawrence (2000). While these friction factor estimates are
subject to considerable error, the predictions of interface profiles are not particularly
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Figure 3. Snapshots of cyclic interface profiles at eight different stages of a forcing cycle.
Adjacent stages [from (a) to (h)] are T/8 apart in time, T being the period of the forcing. Each
snapshot shows the profile (solid curve) predicted using the viscid theory (this study), the profile
(dashed curve) predicted using the inviscid theory (Helfrich 1995) and the profile (visualized
by the black-and-white boundary of the photo) from laboratory experiments (Helfrich 1995).

sensitive to them. Comparison with Helfrich’s (1995) results shows that the inclusion
of viscous effects improves the comparison between predicted and observed interface
positions (figure 3a–h). This is particularly true when either the upper or lower layer
becomes thinner than approximately 25 % of the total flow depth, which is, of course,
when we would expect viscous effects to be more important.
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Nevertheless, discrepancies between the frictional predictions and the observed
interface profiles remain. Prominent instabilities form on the interface, consistent with
predictions of high values of |�u| for a large portion of the tidal cycle (figures 3c, d

and 3f, g). Long’s (1956) criterion is violated towards the right-hand end of the
channel during the first half of the tidal cycle, and towards the left-hand end of the
channel during the second half of the tidal cycle. Another discrepancy is the apparent
re-entry of mixed fluid from the right-hand end of the channel (figure 3f, g). This
end effect is more prominent than otherwise might have been the case, because the
laboratory channel is relatively short, |x| � 0.5. Overall, the frictional solution yields
smooth profiles that match the observations well.

4.2. Flow rates

In the present study we examine the exchange flow rate in each layer averaged over a
forcing cycle. We evaluate the exchange flow at the narrowest section of the channel,
using

qj =
1

T

∫ t+T

t

ujyj dt, at x = 0. (4.1)

For periodic forcing, q2 = − q1. To facilitate comparison we use

qe =
q1

qinv

, (4.2)

where qinv = 0.25 is the steady inviscid exchange flow rate (Armi 1986). To reveal the
dependency of qe on α, β and γ , we solve (2.6) and (2.7), evaluate qe and present
the results as a series of plots, where one parameter is held constant and the other
two are varied. This will enable comparison with the results of Armi (1986), Armi &
Farmer (1986), Helfrich (1995) and Zaremba et al. (2003).

4.2.1. Effects of varying β and γ while α is held constant

The highest predicted exchange flows are for inviscid flow (α = 0) subject to
barotropic forcing with a period that is very long compared to the travel time
through the channel (γ → ∞). This case was studied by Armi & Farmer (1986), who
found that for β � βc =0.544, the exchange flow rate is not enhanced by the forcing;
whereas for β >βc, the exchange rate increases linearly with increasing β .

In the presence of low friction (α � 0.1) the effect of varying β remains qualitatively
the same as in the inviscid case (figure 4a), the main difference being that qe is reduced
slightly. For β → 0, the solution approaches the steady prediction of Zaremba et al.
(2003). For 0 <β � βc, qe remains essentially unaltered by variations in β and γ . For
β >βc, qe increases with both increasing β and γ in qualitatively the same manner as
predicted by Helfrich (1995).

As friction is increased the exchange rate decreases, and there is an increasing
variation in qe with β and γ for β � βc (figure 4b–d ). An interesting feature of flows
with strong friction is that when the forcing period is relatively short the exchange
rate can be less than that in the unforced case, i.e. qe < qZ03 where qZ03 is the exchange
rate predicted by Zaremba et al. (2003). This phenomenon, which we will call ‘tidal
inhibition’, is not evident in the inviscid model of Helfrich (1995). It occurs when
the combination of relatively high-frequency tidal forcing and friction reduces the
exchange rate more than friction acting alone. The variation of upper layer thickness,
velocity and flow rate for a tidally inhibited flow is presented in figure 5. The phase lag
between the fluctuations in velocity and layer thickness is greater in tidally inhibited
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Figure 4. Curves of average exchange rate, qe [see (4.2)], as a function of forcing amplitude β
for a range of values of forcing period γ . (a) α = 0.1, low friction; (b) α = 1, moderate friction;
(c) α = 3, high friction; (d ) α =10, very high friction. The inviscid quasi-steady prediction
(α = 0 and γ = ∞ in Armi & Farmer 1986) is shown for comparison. The arrows indicate the
predictions of Zaremba et al. (2003).

flows than in tidally enhanced flows, i.e. flows with qe > qZ03. Tidal inhibition is
strongest for γ ≈ 1 (see figure 6).

4.2.2. Effects of varying α and γ while β is held constant

The above results show the consistency between the predictions of Armi & Farmer
(1986), Helfrich (1995), Zaremba et al. (2003) and those of the present study. To
further confirm this consistency we set β = 1 and allow γ to vary while setting
α = 0.1, 1 and 10 (figure 6). All else being equal, the exchange rate drops as friction is
increased. For all values of α the predictions for γ = 0 match those of Zaremba et al.
(2003). For α = 0.1 the variation of qe with γ is qualitatively the same as Helfrich
(1995), the quantitative difference being a reduction of qe by approximately 10 %. For
α = 1 and 10 tidal inhibition is observed for small values of γ .

4.2.3. Effects of varying α and β while γ is held constant

Another useful way to visualize the factors influencing the exchange rate is to plot
contours of qe on the α–β plane for specific values of γ . Examples with γ = 2, 4, 8
and 16 are shown in figure 7(a–d ). The α–β plane can be separated into two regions, a
friction-dominated region where qe < 1, and a forcing-dominated region where qe > 1.
The flow is dominated by forcing at high β and low α, as we would expect. Also
the region of the α–β plane dominated by forcing increases. The friction-dominated
region can be further divided into tidally enhanced (qe > qZ03), and tidally inhibited
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Figure 5. (a) Time series of upper-layer thickness (y1) and velocity (u1). (b) Time series of
volumetric transport (q1). The predictions are made at the narrows (x = 0), for the combined
condition of strong friction (α = 10) and moderate barotropic forcing (β = 1). For γ = 3, the
q1 average over the forcing period (the thin dashed line in panel b) is below the steady, viscous
prediction of Zaremba et al. (2003) (the dotted line in panel b), indicating tidal inhibition. For
γ = 16, the q1 average over the forcing period (the thin solid line in panel b) is above the
prediction of Zaremba et al. (2003), indicating tidal enhancemeant.

flow (qe < qZ03). Tidally inhibited flow occurs at high α and low γ , and is apparent in
figure 7(c, d). The region of tidally inhibited flow disappears at high γ (figure 7a, b),
since the phase lag decreases as the tidal period increases.

In summary, we can identify three regimes of exchange flow through a contraction
(1) Forcing-dominated flow (qe > 1)
(2) Tidally enhanced friction-dominated flow (qZ03 <qe < 1) and
(3) Tidally inhibited friction-dominated flow (qe < qZ03).
In the following section we will consider whether these flow regimes might be

expected in various sea straits.

5. Discussion
Estimates of α, β and γ and several important sea straits are presented in table 1.

In compiling table 1 we have used the estimates presented by Helfrich (1995) except
for Gibraltar, where we have added a sill, and the Bab el Mandab, where we have
used the values suggested by D. A. Smeed (2004; personal communication, 2007). For
each strait we have assumed a bottom friction factor fb = 0.004, which corresponds
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Figure 6. Curves of average exchange rate qe [see (4.2)], as a function of forcing period γ ,
showing increases in qe with larger γ under all friction conditions (except the case of short
forcing period and strong friction, as illustrated in figure 5). The arrows indicate the predictions
of Zaremba et al. (2003). The curves approach the inviscid, unsteady solution (Helfrich 1995),
as friction diminishes.

to the value determined from field data obtained in the Burlington Ship Canal by
Lawrence et al. (2004), and is representative of previously published estimates.

While the model presented above accounts for the effects of friction and periodic
forcing, there are a number of potentially important factors that it does not consider.
The model assumes that the geometry of the strait conforms to our very simple model,
that the tidal forcing is of constant amplitude and period, and that the reservoirs on
either side of the strait are of infinite extent and uniform density. The model also
neglects mixing between the layers, and Coriolis and non-hydrostatic effects.

Three non-dimensional exchange rates are listed in table 1. Under qFA86 we list
the inviscid steady exchange rates given in Farmer & Armi (1986). We then list qZ03,
corresponding to frictional steady flow. Finally we list our predictions for qe, the
exchange rate when both friction and periodic forcing are included. These predictions
are subject to all of assumptions listed above. Our goal is not to provide accurate
estimates of the exchange rate through any of the straits, but rather to provide a
sense of the importance of friction and tidal forcing through comparisons of qFA86,
qZ03 and qe.

In Tiran Strait a lower layer of dense Gulf of Aqaba water flows southwards into
the Red Sea, and an upper layer of less density Red Sea water flows northwards into
the gulf (figure 8a). The strait is dynamically short so that frictional effects on the
exchange are weak; similarly the tidal forcing is weak, so that the predicted exchange
rate is only slightly less than steady inviscid result (table 1).
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Figure 7. Contours of average exchange rate qe on the α–β plane. (a) γ = 2, (b) γ = 4,
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Figure 8. (a) A vertical section of the Tiran Strait, showing the tidally averaged position of
the fluid density structure based on field measurements (solid curves, from Murray et al. 1984),
and the tidally induced back and forth excursion (the dashed curve and the dashed-dotted
curve) of the density interface based on our prediction. (b) Conditions under which supercritical
(shaded) and subcritical (unshaded) flows are predicted in Tiran Strait as a function of position
along the contraction and time (normalized by the tidal period).
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Field measurements (Murray, Hecht & Babcock 1984) provide the mean position
of density contours (solid curves, figure 8a), after removing the tidally induced back
and forth excursion of the density structure. Interface positions predicted using the
parameter values for the Tiran Strait are in good agreement with the interface
measurements. Flooding tides accelerate the upper layer and depress the density
interface, whereas ebbing tides accelerate the lower layer and raise the interface. The
observed density structure appears to be bounded by the predicted peak flood and
ebb interface limits.

Tiran Strait provides a good example of a maximal exchange flow with a region
of subcritical flow bounded on both sides by supercritical flow (figure 8b). The
supercritical regions are not of the same extent, because friction is applied to the
bottom, but not at the free surface. While conditions remain similar throughout
the tidal cycle there are variations in the extent of the subcritical and supercritical
regions. The region of subcritical flow is narrow because of the low value of the
friction parameter (α = 0.04). As α vanishes, so does the subcritical region, until the
inviscid result of critical flow at the narrows (x =0) surrounded by supercritical flow
is retrieved.

Maximal exchange flow, as observed in Tiran Strait may be the exception rather
than the rule. As α is increased the subcritical region expands, the supercritical
regions get smaller, and the tidal variations larger. Eventually, one of the supercritical
regions is lost and the flow becomes submaximal for part of the tidal cycle. The
period of submaximal flow then increases until maximal flow is lost throughout the
entire tidal cycle. As α is increased further, periods of uncontrolled flow appear, and
eventually the flow is subcritical throughout the tidal period. The transition from
maximal exchange to subcritical flow has been analysed for steady frictional flow in
Zaremba et al. (2003).

The Strait of Gibraltar exhibits hydraulic control in the vicinity of the Camarinal
Sill, but presence of hydraulic control in the Tarifa Narrows is a matter of debate
(Armi & Farmer 1988; Garrett, Bormans & Thompson 1990; Sannino, Bargagli &
Artale 2004). Thus, depending on conditions in Tarifa Narrows the exchange is
either maximal or submaximal. Either way, any model of the Strait of Gibraltar
should include the Camarinal Sill. We have added a sill to our geometry using the
approximation of Helfrich (1995) that the total depth (560 m) is double the depth of
the sill (280 m); however to better reflect the actual width variation (see Sannino et al.
2004), we have set the ratio of the width of the channel at the Narrows to the width
at the sill to 0.8, rather than 0.5. With this idealization, the flow at Tarifa Narrows
is predicted to vary between subcritical and critical during the tidal cycle (figure 9b),
indicating that the flow alternates between submaximal and maximal exchange.

Predictions of interface level variation at Tarifa Narrows are compared with the
observations of Armi & Farmer (1988) in figure 9(a). The model provides a reasonable
estimate of the asymmetry of the tidal variation in interface level, and of the magnitude
of this variation [O(100 m)]. The predicted steepening of the interface between 4:00
and 5:00 and between 16:00 and 17:00 (see figure 9) coincides with the arrival of
packets of large amplitude internal waves at Tarifa Narrows. These disturbances are
generated at the Camarinal Sill and propagate through the strait (Armi & Farmer
1988).

In general, the predicted interface level falls below the observed level. This is not
surprising when we consider that the strait does not have a rectangular cross-section,
and that the lower narrower layer is active at the Camarinal Sill; whereas, the
upper wider layer is active at Tarifa Narrows. Therefore, the rectangular cross-section
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(a) Time series of observed and predicted interface level at Tarifa Narrows

(b) Time series of predicted composite Froude number  at Tarifa Narrows
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Figure 9. (a) Time series of the observed and predicted density interface position at Tarifa
Narrows together with the σt = 27, 28 and 29 isopycnals, from Armi & Farmer (1988).
(b) Variation of the composite Froude number with tidal phase.

assumed in the model is under representing the relative channel width at Tarifa
Narrows, and the upper layer thickness is overpredicted. Other effects may also be
present, for instance our estimates of the friction factors may be too high resulting in
a thicker upper layer at Tarifa narrows also.

For the case of an offset sill and contraction Farmer & Armi (1986) calculate
the inviscid unforced flow to have an exchange rate qFA86 = 0.73. Thus, from table 1
the flow is frictionally dominated with tidal enhancement. The inclusion of friction
reduces the predicted flow by 33 % to qZ03 = 0.49, and the inclusion of periodic forcing
increases the predicted flow by 27 % to qe =0.62. The latter prediction is consistent
with the predicted tidal enhancement of about 30 % obtained by Sannino et al. (2004)
in their study of tidal exchange through the strait using a three-dimensional ocean
model.

Both Lombok Strait and the Bab el Mandab are subject to moderate friction and
weak forcing (β <βc). In each case the predicted reduction in flow rate due to friction
is approximately 40 %, and the increase in flow rate due to tidal enhancement less
than 5 %. For the parameter values corresponding to these straits we predict that the
flow is submaximal throughout the tidal cycle. The field measurements of Pratt et al.
(2000) confirm this result for the Bab el Mandab.

The only tidally dominated strait listed in table 1 is Messina. If friction (α =0.5)
is considered alone, the flow is reduced to qZ03 = 0.63; however, when tidal forcing
(β =2, γ = 4) is added the flow rate is almost doubled to qe =1.12, by far the highest
of all the straits considered.

Two straits, Oslofjord and the Bosphorus are dynamically long. The flow rates are
reduced by approximately 70 % due to friction alone, and are further reduced by
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tidal inhibition, although in the case of the Bosphorus tidal inhibition is weak. The
exchange flow rate is likely even further reduced in these long straits as they are
subject to substantial mixing from various sources as the flow passes through the
strait. Field measurements in the Bosphorus show that the density of the fluid in each
of the layers changes significantly along the strait (Ozsoy et al. 2001).

In summary, our model predicts that, for the idealized geometry that we have
assumed, and the parameter sets of the seven straits listed in table 1: one, Tiran,
is essentially unaffected by friction and barotropic forcing; three, Lombok, Bab el
Mandab and Bosphorus, are substantially influenced by friction, but not barotropic
forcing; two, Gibraltar and Messina are substantially influenced by friction and tidal
enhancement; and one, the Oslofjord, is substantially influenced by friction and tidal
inhibition. Thus, even given the limitations of the hydraulic approach adopted in
this paper, it appears that in addition to friction, both tidal enhancement and tidal
inhibition can be important in natural straits.

6. Conclusions
A model of frictional periodically forced exchange through a simple contraction

was developed based on the equations of internal hydraulics. We explored the effects
of variations in friction α and the strength β and period γ of barotropic forcing,
on interface elevation, layer velocities and volumetric transport. In the appropriate
limits, the results for steady inviscid flow (Armi 1986), quasi-steady inviscid flow
(Armi & Farmer 1986), periodically forced inviscid flow (Helfrich, 1995) and steady
flow with friction (Zaremba et al. 2003) were all recovered. The predicted time-
dependent interface position compared well with laboratory experiments of Helfrich
(1995).

Increasing friction always reduces the layer velocities and the time-averaged
exchange rate. Barotropic forcing usually enhances the exchange rate, and is more
effective when its period is longer. However, a weak barotropic forcing with a relatively
high frequency can inhibit the exchange rate if the phase lag between the interface
position and the layer velocities is sufficiently large.

We did not attempt to model the effects of complicated geometry and forcing,
nor did we attempt to model mixing between the layers, and so could not expect to
model all the details of flow in sea straits. Nevertheless, we were able to examine
whether or not friction and tidal forcing are likely to be important in a series of seven
prominent sea straits: Tiran, Gibraltar, Lombok, Messina, Bab-el-Mandeb, Oslofjord
and Bosphorous. Together these straits cover a parameter space that includes flows
that are unaffected by friction and tidal forcing and flows that are strongly affected
by friction and either tidal enhancement or tidal inhibition. The degree of hydraulic
control (maximal, submaximal or uncontrolled) varies from strait to strait, and can
vary within a given strait during the tidal cycle.
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